CMPT 409/981: Quantum Circuits and Compilation
Assignment 1

Due October 7th at the start of class
on paper or by email to the instructor

Question 1 [2 points]: GHZ states
Show that the 3-qubit state .
V2

cannot be written as a tensor product of 1-qubit states,
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Question 2 [3 points|: Entangling operations

Show that the matrix
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0z = 001 O
0 00 -1

is an entangling operation by giving an explicit 2-qubit product state |¢)) @ |¢) and showing that
the state CZ(|1)) ® |¢)) is entangled.

Question 3 [7 points|: Strange occurrences

Recall that
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is an example of a Bell state. There are 4 Bell states in total, listed below:
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Together, these states give an orthonormal basis B = {®+, &~ U+ U~} of C? ® C? called the Bell
basis. As entangled states they can be used to perform spooky action at a distance, some effects of
which we will explore in this question.

1. Show that for any 2x2 matrix A, A® I|®+) = I @ A'|®T), where A! is the transpose of A.

2. Since B is an orthonormal basis, we can measure a 2-qubit state with respect to this basis,
using {|v)(v| : |[v) € B} as our measurement operators. Given a 3 qubit system prepared in
the state 1)) ® |®T) where 1)) = «|0) 4+ S|1), show that the final state after measuring the
FIRST TWO qubits with respect to the Bell basis and obtaining measurement result |®%) is

27) @ [4)
3. Show that if in the prior question we instead prepared the initial state as
¥) ® (A® I]2T))

then the state after obtaining measurement outcome |®1) is

|27) @ (A[v))

Hint: there is a simple algebraic proof that doesn’t require explicit matrix calculations.
To find this proof, you may find it helpful to ignore the post-measurement normalization —
that is, given measurement operators {M,,} and state |¢), the final unnormalized state after
receiving measurement result m is M,,|¢). Often working “up to normalization” simplifies
calculations significantly.

4. Recall that
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Design a circuit using H and CNOT gates that will map Bell states to states of the compu-
tational basis, so that we may implement Bell basis measurements via computational basis
measurements. It may be helpful to use the following characterization (x,y € {0,1}):

CNOT : [z)ly) = |z)|z © y)
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Question 4 [2 points|: Another universal gate?

The FREDKIN gate is a 3-bit reversible gate implementing which swaps the last two bits if and
only if the first bit is 0. Graphically, the FREDKIN gate can be written as



Yy —%—ydz(ydz)

2 —*%— 2@ z(ydz)

Show that the FREDKIN gate, together with ancillas initialized in the 0 or 1 state is universal
for reversible computation. You may use the fact that the TOFFOLI gate is universal (with ancillas
in the 0 or 1 state).

Question 5 [4 points]: Majority rules

The magority function maj : {0,1}3 — {0,1} computes the majority value of 3 bits — that is, if 2
or more of x,y, z are 1, then maj(z,y, z) = 1, otherwise maj(z,y, z) = 0.

1. Verify that maj(z,y,2) = zy ® vz O yz

Hint: the function is symmetric in all of its inputs, so you only need to consider four cases

2. Give a reversible circuit implementing the majority function using 3 Toffoli gates and 1 ancilla
initialized in the O state.

3. Give an alternate factorization of the maj function that uses only 2 multiplications and use
this decomposition to give a reversible circuit implementing maj with only 2 Toffoli gates
and arbitrarily many CNOT gates

4. (Bonus 2pts): Give an implementation of the maj function using only 1 Toffoli gate (you
can use as many CNOT gates and ancillas as you like)

Question 6 [10 points|: Diagonalization

We say that two matrices A, B are simultaneously diagonalizable if there exists some unitary U
such that A = UALU', B = UAUT. It can be shown that two Hermitian operators A, B are
simultaneously diagonalizable if and only if they commute, i.e.,

AB = BA

A+B _ LA B

Moreover, if A and B commute, then it can be shown that e
In this question we use simultaneous diagonalization to efficiently implement a circuit for sim-

ulating a Hamiltonian of the form
(O X®Z+0220X)

The design of such circuits is the primary compilation question for quantum algorithms simulating
quantum systems.
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. As a warmup, diagonalize Y = [S 0

} by finding orthonormal vectors |4y ), |-y ) such that

Y|+y) = [+y)
Yi-y)=—[-v)

. Show that X ® Z and Z ® X commute. (Hint: recall that XZ = —ZX)

. Find an orthonormal basis for the 4-dimensional joint eigenspace of X ® Z and Z ® X. That
is, find some set {|v;)} of 4 unit vectors such that

(X & Z)”UZ'> = /\a,i]vi>
(Z @ X)|vi) = N ilvi)

. Use these eigenvectors to design a unitary U simultaneously diagonalizing X ® Z and Z ® X
as Z® I and I ® Z, respectively.

. Show that
C(O1X®Z+0:20X) _ 7 (ezelz ® ei@gZ) Ut



