
CMPT 409/981: Quantum Circuits and Compilation

Assignment 1

Due October 7th at the start of class
on paper or by email to the instructor

Question 1 [2 points]: GHZ states

Show that the 3-qubit state

|GHZ〉 =
1√
2

(|000〉+ |111〉)

cannot be written as a tensor product of 1-qubit states,

|ψ〉 ⊗ |ϕ〉 ⊗ |θ〉.

Question 2 [3 points]: Entangling operations

Show that the matrix

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


is an entangling operation by giving an explicit 2-qubit product state |ψ〉 ⊗ |φ〉 and showing that
the state CZ(|ψ〉 ⊗ |φ〉) is entangled.

Question 3 [7 points]: Strange occurrences

Recall that

|Φ〉 =
1√
2

(|00〉+ |11〉) =


1√
2

0
0
1√
2


is an example of a Bell state. There are 4 Bell states in total, listed below:

|Φ+〉 =
1√
2

(|00〉+ |11〉) |Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉) |Ψ−〉 =
1√
2

(|01〉 − |10〉)
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Together, these states give an orthonormal basis B = {Φ+,Φ−,Ψ+,Ψ−} of C2 ⊗C2 called the Bell
basis. As entangled states they can be used to perform spooky action at a distance, some effects of
which we will explore in this question.

1. Show that for any 2x2 matrix A, A⊗ I|Φ+〉 = I ⊗At|Φ+〉, where At is the transpose of A.

2. Since B is an orthonormal basis, we can measure a 2-qubit state with respect to this basis,
using {|v〉〈v| : |v〉 ∈ B} as our measurement operators. Given a 3 qubit system prepared in
the state |ψ〉 ⊗ |Φ+〉 where |ψ〉 = α|0〉 + β|1〉, show that the final state after measuring the
FIRST TWO qubits with respect to the Bell basis and obtaining measurement result |Φ+〉 is

|Φ+〉 ⊗ |ψ〉

3. Show that if in the prior question we instead prepared the initial state as

|ψ〉 ⊗ (A⊗ I|Φ+〉)

then the state after obtaining measurement outcome |Φ+〉 is

|Φ+〉 ⊗ (At|ψ〉)

Hint: there is a simple algebraic proof that doesn’t require explicit matrix calculations.
To find this proof, you may find it helpful to ignore the post-measurement normalization —
that is, given measurement operators {Mm} and state |ϕ〉, the final unnormalized state after
receiving measurement result m is Mm|ϕ〉. Often working “up to normalization” simplifies
calculations significantly.

4. Recall that

H =
1√
2

[
1 1
1 −1

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Design a circuit using H and CNOT gates that will map Bell states to states of the compu-
tational basis, so that we may implement Bell basis measurements via computational basis
measurements. It may be helpful to use the following characterization (x, y ∈ {0, 1}):

CNOT : |x〉|y〉 7→ |x〉|x⊕ y〉

H : |x〉 7→ 1√
2

(|0〉+ (−1)x|1〉)

Question 4 [2 points]: Another universal gate?

The FREDKIN gate is a 3-bit reversible gate implementing which swaps the last two bits if and
only if the first bit is 0. Graphically, the FREDKIN gate can be written as
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x • x

y × y ⊕ x(y ⊕ z)

z × z ⊕ x(y ⊕ z)

Show that the FREDKIN gate, together with ancillas initialized in the 0 or 1 state is universal
for reversible computation. You may use the fact that the TOFFOLI gate is universal (with ancillas
in the 0 or 1 state).

Question 5 [4 points]: Majority rules

The majority function maj : {0, 1}3 → {0, 1} computes the majority value of 3 bits — that is, if 2
or more of x, y, z are 1, then maj(x, y, z) = 1, otherwise maj(x, y, z) = 0.

1. Verify that maj(x, y, z) = xy ⊕ xz ⊕ yz

Hint: the function is symmetric in all of its inputs, so you only need to consider four cases

2. Give a reversible circuit implementing the majority function using 3 Toffoli gates and 1 ancilla
initialized in the 0 state.

3. Give an alternate factorization of the maj function that uses only 2 multiplications and use
this decomposition to give a reversible circuit implementing maj with only 2 Toffoli gates
and arbitrarily many CNOT gates

4. (Bonus 2pts): Give an implementation of the maj function using only 1 Toffoli gate (you
can use as many CNOT gates and ancillas as you like)

Question 6 [10 points]: Diagonalization

We say that two matrices A, B are simultaneously diagonalizable if there exists some unitary U
such that A = UΛAU

†, B = UΛBU
†. It can be shown that two Hermitian operators A, B are

simultaneously diagonalizable if and only if they commute, i.e.,

AB = BA

Moreover, if A and B commute, then it can be shown that eA+B = eAeB.
In this question we use simultaneous diagonalization to efficiently implement a circuit for sim-

ulating a Hamiltonian of the form
ei(θ1X⊗Z+θ2Z⊗X)

The design of such circuits is the primary compilation question for quantum algorithms simulating
quantum systems.
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1. As a warmup, diagonalize Y =

[
0 −i
i 0

]
by finding orthonormal vectors |+Y 〉, |−Y 〉 such that

Y |+Y 〉 = |+Y 〉
Y |−Y 〉 = −|−Y 〉

2. Show that X ⊗ Z and Z ⊗X commute. (Hint: recall that XZ = −ZX)

3. Find an orthonormal basis for the 4-dimensional joint eigenspace of X ⊗Z and Z ⊗X. That
is, find some set {|vi〉} of 4 unit vectors such that

(X ⊗ Z)|vi〉 = λa,i|vi〉
(Z ⊗X)|vi〉 = λb,i|vi〉

∀i 6= j, 〈vi|vj〉 = 0

4. Use these eigenvectors to design a unitary U simultaneously diagonalizing X ⊗Z and Z ⊗X
as Z ⊗ I and I ⊗ Z, respectively.

5. Show that
ei(θ1X⊗Z+θ2Z⊗X) = U

(
eiθ1Z ⊗ eiθ2Z

)
U †
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